991 resultados para Molecular taxonomy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionary history and classification of the palaemonid shrimps has been the subject of constant speculation and debate. At present, all major systematic treatments have been based on morphological characteristics. To help resolve the phylogenetic relationships, and thus enable the creation of a classification system that reflects evolutionary history, a region of the 16S mitochondrial rRNA gene was sequenced for a number of Australian Palaemonidae. The resulting phylogenetic analyses indicated the presence of major anomalies in the current classification of Australian Palaemonidae. Significantly, three species belonging to three separate genera, Macrobrachium intermedium, Palaemon serenus, and Palaemonetes australis, are closely related, with genetic differences more characteristic with that of congeneric species. The results also demonstrate non-monophyly in Australian palaemonids with respect to both Palaemonetes and Macrobrachium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 352 specimens were analyzed to achieve the different aims of this thesis. 255 central-northern Adriatic specimens of S. solea and S. aegyptiaca were molecularly analysed using microsatellite locus Sos(AC)40 and 205 also morphologically due to evaluate the abundance and the distribution of the cryptic species S. aegyptiaca and to confirm morphologic analyses. Morphological and molecular analyses comparated show a correspondence of 96%. A combined morphologic approach could be proposed to apply multiple criteria on the analyzed external morphological keys. The Adriatic Egyptian soles may lives in shallow waters (up 30 m) and in brackish lagoon. 127 samples of Adriatic common sole added to 326 samples of previous studies showed, using mitochondrial marker (CytB), that the Adriatic Sea as contact zone between Tyrrhenian and Aegean Sea, the divergence within the Adriatic Sea is low but significant between central-north and south, with a longitudinal strong gene flow in central-northern side. It’s also showed as in the Adriatic Sea two near-panmictic populations of common sole exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu strict, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CMFRI,

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O gênero Steno pertence à Ordem Cetartiodactyla, Família Delphinidae, e compreende apenas uma espécie: o golfinho-de-dentes-rugosos, Steno bredanensis. O golfinho-de-dentes-rugosos é encontrado nos Oceanos Atlântico, Pacífico e Índico, em águas profundas tropicais, subtropicais e temperadas quentes. Entretanto, em algumas localidades como as regiões Sudeste e Sul do Brasil, esta espécie é conhecida por apresentar hábitos costeiros, o que a torna suscetível a ameaças antropogênicas como a degradação do hábitat, as capturas acidentais e diversos tipos de poluição. Conhecer a magnitude destes impactos e o grau de diferenciação genética das populações usando marcadores moleculares são aspectos importantes para a conservação da espécie. Os marcadores moleculares são segmentos específicos de DNA que podem ou não fazer parte de um gene e que apresentam grau de polimorfismo adequado para responder questões sobre as relações genéticas de indivíduos, populações ou diferentes espécies. O DNA mitocondrial é um dos marcadores moleculares mais utilizados em estudos sobre estrutura populacional, sistemática e filogenia de cetáceos. Estudos genéticos têm mostrado que várias espécies de delfinídeos apresentam estrutura populacional genética, entre e dentro das bacias oceânicas. No presente estudo foi investigada a diferenciação genética do golfinho-de-dentes-rugosos usando sequências da região controle mitocondrial de várias localidades em todo o mundo (Oceano Pacífico Centro-Sul: N=59; Pacífico Tropical Leste: N= 4; Pacífico Noroeste: N=1; Oceano Índico: N=1; Atlântico - Caribe: N=3; Atlântico Sudoeste: N=44; N total = 112). Análises preliminares indicaram grande diferenciação genética entre os Oceanos Atlântico e Pacífico/Índico (distância p = 0,031), que foram posteriormente investigadas utilizando sequências do citocromo b e mitogenomas completos. As análises filogenéticas de Neighbor-Joining e Bayesianas não foram conclusivas sobre a existência de especiação críptica em Steno. No entanto, a grande diferenciação entre as bacias oceânicas merece uma análise mais aprofundada, utilizando outros marcadores genéticos (por ex., sequências nucleares) bem como dados morfológicos. Não obstante, as análises AMOVA e FST par-a-par revelaram forte diferenciação populacional, não só entre os oceanos Atlântico e Pacífico, mas também no Atlântico, onde foram detectadas três populações: Caribe, região Sudeste e região Sul do Brasil. As populações detectadas no Atlântico Sudoeste devem ser aceitas como Unidades de Manejo (Management Units, MU) e dados demográficos básicos precisam ser levantados para essas MU, a fim de possibilitar uma melhor avaliação dos impactos antrópicos sobre elas. Este estudo fornece a primeira perspectiva sobre a diferenciação genética mundial de S. bredanensis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) is beginning to show its full potential for diagnostic and therapeutic applications. In particular, it is enunciating its capacity to contribute to a molecular taxonomy of cancer, to be used as a standard approach for diagnostic mutation detection, and to open new treatment options that are not exclusively organ-specific. If this is the case, how much validation is necessary and what should be the validation strategy, when bringing NGS into the diagnostic/clinical practice? This validation strategy should address key issues such as: what is the overall extent of the validation? Should essential indicators of test performance such as sensitivity of specificity be calculated for every target or sample type? Should bioinformatic interpretation approaches be validated with the same rigour? What is a competitive clinical turnaround time for a NGS-based test, and when does it become a cost-effective testing proposition? While we address these and other related topics in this commentary, we also suggest that a single set of international guidelines for the validation and use of NGS technology in routine diagnostics may allow us all to make a much more effective use of resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pasteurella multocida is commonly found in the oral cavity of cats and dogs. In humans it is known as an opportunistic pathogen after bites from these animals. Phenotypic identification of P. multocida based on biochemical reactions is often limited and usually only done on a species level, even though 3 subspecies are described. For molecular taxonomy and diagnostic purposes a phylogenetic analysis of the three subspecies of P. multocida based on their 16S rRNA (rrs) gene sequence was therefore carried out. We found P. multocida subsp. septica on a distinguished branch on the phylogenetic tree of Pasteurellaceae, due to a 1.5% divergence of its rrs gene compared to the two other, more closely related subspecies multocida and gallicida. This phylogenetic divergence can be used for the identification of P. multocida subsp. septica by rrs gene determination since they form a phylogenetically well isolated and defined group as shown with a set of feline isolates. Comparison to routine phenotypic identification shows the advantage of the sequence-based identification over conventional methods. It is therefore helpful for future unambiguous identification and molecular taxonomy of P. multocida as well as for epidemiological investigations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large vesicomyid clams are common inhabitants of sulphidic deep-sea habitats such as hydrothermal vents, hydrocarbon seeps and whale-falls. Yet, the species- and genus-level taxonomy of these diverse clams has been unstable due to insufficiencies in sampling and absence of detailed taxonomic studies that would consistently compare molecular and morphological characters. To clarify uncertainties about species-level assignments, we examined DNA sequences from mitochondrial cytochrome-c-oxidase subunit I (COI) in conjunction with morphological characters. New and published COI sequences were used to create a molecular database for 44 unique evolutionary lineages corresponding to species. Overall, the congruence between molecular and morphological characters was good. Several discrepancies due to synonymous species designations were recognized, and acceptable species names were rectified with published COI sequences in cases where morphological specimens were available. We identified seven species with trans-Pacific distributions, and two species with Indo-Pacific distributions. Presently, 27 species have only been documented from one region, which might reflect limited ranges, or insufficient geographical sampling. Vesicomyids exhibit the greatest species diversity along the northwest Pacific ridge systems and in the eastern Pacific, along the western America margin, where depth zonation typically results in segregation of closely related species. The broad distributions of several vesicomyid species suggest that their required chemosynthetic habitats might be more common than previously recognized and occur along most continental margins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet, and even within some cytogenetically well-defined subclasses there is considerable clinical heterogeneity. Recent advances in genomics technologies such as gene expression profiling (GEP) provide powerful tools to further characterize myeloid malignancies at the molecular level, with the goal to refine the MDS/AML classification system, incorporating as yet unknown molecular genetic and epigenetic pathomechanisms, which are likely reflected by aberrant gene expression patterns. In this study, we provide a comprehensive review on how GEP has contributed to a refined molecular taxonomy of MDS and AML with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics technologies, which will continue to improve our understanding of malignant transformation in myeloid malignancies and thereby contribute to individualized risk-adapted treatment strategies for MDS and AML patients. Leukemia (2011) 25, 909-920; doi:10.1038/leu.2011.48; published online 29 March 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Yeasts are ubiquitous in their distribution and populations mainly depend on the type and concentration of organic materials. The distribution of species, as well as their numbers and metabolic characteristics were found to be governed by existing environmental conditions. Marine yeasts were first discovered from the Atlantic Ocean and following this discovery, yeasts were isolated from different sources, viz. seawater, marine deposits, seaweeds, fish, marine mammals and sea birds. Nearshore environments are usually inhabited by tens to thousands of cells per litre of water, whereas low organic surface to deep-sea oceanic regions contain 10 or fewer cells/litre. Aerobic forms are found more in clean waters and fermentative forms in polluted waters. Yeasts are more abundant in silty muds than in sandy sediments. The isolation frequency of yeasts fell as the depth of the sampling site is increased. Major genera isolated in this study were Candida, Cryptococcus, Debaryomyces and Rhodotorula. For biomass estimation ergosterol method was used. Classification and identification of yeasts were performed using different criteria, i.e. morphology, sexual reproduction and physiological/biochemical characteristics. Fatty acid profiling or molecular sequencing of the IGS and ITS regions and 28S gene rDNA ensured accurate identification.